منابع مشابه
Determination of a jump by Fourier and Fourier-Chebyshev series
By observing the equivalence of assertions on determining the jump of a function by its differentiated or integrated Fourier series, we generalize a previous result of Kvernadze, Hagstrom and Shapiro to the whole class of functions of harmonic bounded variation. This is achieved without the finiteness assumption on the number of discontinuities. Two results on determination of ...
متن کاملA note on rearrangements of Fourier coefficients
© Annales de l’institut Fourier, 1976, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier...
متن کاملFourier Series
for some fixed τ , which is called the period of f . Though function approximation using orthogonal polynomials is very convenient, there is only one kind of periodic polynomial, that is, a constant. So, polynomials are not good for approximating periodic functions. In this case, trigonometric functions are quite useful. A large class of important computational problems falls under the category...
متن کاملFourier Series
Here are some facts about Fourier Series — useful for pde and elsewhere. Proofs of Lemmas are easy exercises, and not given. On the other hand, proofs of LEMMAS are harder; their proofs are indicated, or a reference is given.
متن کاملAcceleration of Fourier Series
We discuss the effects of several sequence acceleration methods on the partial sums of Fourier series. For a large set of functions we show that these methods fail. 2000 Mathematics Subject Classification: 65B10, 65T10, 42A20
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Approximation Theory
سال: 1990
ISSN: 0021-9045
DOI: 10.1016/0021-9045(90)90076-3